Tetrahedron Letters, Vol.30, No.6, pp 723-724, 1989 0040-4039/89 \$3.00 + .00 Printed in Great Britain Pergamon Press plc

FIRST TOTAL SYNTHESIS OF (+)-CASSIOL. A POTENT ANTIULCEROGENIC COMPOUND

Tadahiro Takemoto, Chikara Fukaya^{*} and Kazumasa Yokoyama. Central Research Laboratory, The Green Cross Corporation, 2-1180-1, Shodai-Ohtani, Hirakata, Osaka 573, Japan.

Summary: The first total synthesis of (S)-(+)-Cassiol (2) is described.

Cassioside (<u>1</u>), isolated from aqueous extract of Cinnamoni Cortex (Cinnamonum cassia Blume; "Kannan Keihi" in Japanese)^{1a}, showed serotonininduced antiulcerogenic activity^{1b}. In this communication, we wish to report the first synthesis of cassiol (<u>2</u>), which inhibits the ulceration in rat more strongly than <u>1</u>, from the optically active keto ester <u>3</u>². The keto ester <u>3</u> was converted into the crotonate <u>4</u> in 66 % yield in 3 steps (ketalization and subsequent formation of carbon-carbon double bond in the side chain). The crotonate <u>4</u> was subjected to osmylation followed by NalO₄ oxidation to afford

(a) ethylene glycol, p-TsOH. PhH, rcflux; (b) PhSeBr, LiICA³, THF, -78°C; (c) 30 % H₂O₂ aq, CH₂Cl₂, 0°C; (d) OsO₄, Pyr, PhH, rt / then sat NaHSO₃ aq; (e) NaIO₄, Et₂O, rt; (f) NaBH₄, EtOH, 0°C; (g) ^t Bu Ph₂SiCl, imidazole, DMF; (h) p -TsOH, aq THF, reflux; (i) MeI, LDA, HMPA, THF, - 78°C; (j) TMSOTf, Et₃N, CH₂Cl₂, reflux; (k) PhSeCl, CH₂Cl₂, rt; (l) n-BuLi, THF, -50 \rightarrow -78°C / -78 \rightarrow 0°C; (m) PDC, CH₂Cl₂, rt; (n) 70 % HF-Pyr, Pyr-CH₃CN, 70 °C.

the corresponding aldehyde, which was reduced with NaBH₄ to give the alcohol $\underline{5}$ in 74 % overall yield. The alcohol $\underline{5}$ was subjected to silylation followed by deprotection of ketal to afford a ketone (78 % yield), which was monomethylated by usual manner to give the methyl ketone $\underline{6}$ (75 % yield). The methyl ketone $\underline{6}$ was treated sequentially⁴ with (1) TMSOTf/Et₃N (2) PhSeCl (3) 30 %-H₂O₂ aq. to afford the desired enone $\underline{7}$, $[\alpha]_D^{24} = -23.6^{\circ}$ (c 1.80, MeOH), in 89 % overall yield. Selective vinylation (1,2-addition) of $\underline{7}$ was achieved by the reaction with (*E*)-vinyllithium reagent which was generated by the transmetalation of $\underline{8}^5$ with n-BuLi to give the allylalcohol $\underline{9}$ in 94 % yield. Pyridinium dichromate mediated rearrangement of $\underline{9}$ proceeded at room temperature to afford the desired dienone $\underline{10}$ in 75 % yield (84.5 % yield based on recovered $\underline{9}$, $[\alpha]_D^{24} = -14.9^{\circ}$, c 1.42, MeOH). Finally, treatment of $\underline{10}$ with 70 % HF-pyridine complex in pyridine-acetonitrile at 70°C resulted in concominant deprotection of silyl and acetonide groups to give cassiol ($\underline{2}$) as an oil of more than 98 % optical purity⁶ ($[\alpha]_D^{28.5} = +8.63^{\circ}$, c 0.35, MeOH) in 72 % yield. Synthetic cassiol was completely identical with an authentic sample of $\underline{2}$ in all respects.

Acknowledgement: We are grateful to Professor Mamoru Tabata (Kyoto University) for giving the opportunity to start this work and helpful discussions.

References and notes

- (a) Y. Shiraga, K. Okano, T. Akira, C. Fukaya, K. Yokoyama, S. Tanaka, H. Fukui and M. Tabata, Tetrahedron, <u>44</u>, 4703(1988). (b) T. Akira, S. Tanaka and M.Tabata, Planta Medica, 440(1986).
- 2. Commercially available from Aldrich Chemical Co.
- 3. M. W. Rathke and A. Lindert, J. Amer. Chem. Soc., 93, 2318(1971).
- 4. <u>O-silylation</u>: H. Emde, D. Domsch, H. Feger, U. Frick, A. Götz, H. H. Hergot, K. Hoffmann, W. Kober, K. Krägeloh, T. Oesterle, W. Steppan, W. West, G. Simchen, Synthesis, 1982, 1. <u>Selenenylation</u>: S. Danishefsky, C. H. Yan and P. M. McCurry, Jr., J. Org. Chem., <u>42</u>, 1819(1977).
- 5. Vinylstannane <u>8</u> was prepared in 29 % overall yield as the following manner⁷: TMSC =CTMS $\xrightarrow{a, b, c}$ TMS $\xrightarrow{a, b, c} 0 \times 0$ $\xrightarrow{d, e} nBu_sSn \xrightarrow{0} 0 \times 0$ 8 (b.p. 115-130°C / 0.3mmHg).

(a) MeLi-LiBr, THF, rt ; (b) diacetoxyacetone, THF, -78℃ / MsCl, -78℃; (c) LAH, ether, -15℃

then Me₂C(OMe)₂, acetone, H₂SO₄ ; (d) n-Bu₄NF, THF, rt ; (e) n-Bu₃SnH, AIBN(trace), 80 °C

- Optical purity of the synthetic sample was determined by ¹H-NMR analysis of the corresponding tri-MTPA ester: (i) J. D. Morrison, "Asymmetric synthesis" , ACADEMIC PRESS, 1983, chapter 7. (ii) J. A. Dale, D. L. Dull and H. S. Mosher, J. Org. Chem., <u>34</u>, 2543(1969).
- (i) A. B. Holmes, C. L. D. Jennigs-White, A. H. Schulthess, B. Akide and R. M. Walton, J. C. S. Chem. Com., 1979, 840. (ii) H. A. Bates, J. Ferina and M. Tong, J. Org. Chem., <u>51</u>, 2637(1986). (iii) E. J. Corey and R. H. Wollenberg, J. Org. Chem., <u>40</u>, 2265(1975).

(Received in Japan 28 November 1988)